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Abstract. Accurately measuring greenhouse gas concentrations to identify regional sources and sinks is essential for effectively

monitoring and mitigating their impact on the Earth’s changing climate. In this article we present the scientific data products

of XCO2 and XCH4, retrieved with RemoTeC, from the Greenhouse Gases Observing Satellite-2 (GOSAT-2), which span a

time range of five years. GOSAT-2 has the capability to measure total columns of CO2 and CH4 to the necessary requirements

set by the Global Climate Observing System (GCOS), who define said requirements as accuracy < 10 ppb and < 0.5 ppm for5

XCH4 and XCO2 respectively, and stability of < 3 ppb yr−1 and < 0.5 ppm yr−1 for XCH4 and XCO2 respectively.

Central to the quality of the XCO2 and XCH4 datasets is the post-retrieval quality flagging step. Previous versions of Re-

moTeC products have relied on threshold filtering, flagging data using boundary conditions from a list of retrieval parameters.

We present a novel quality filtering approach utilising a machine learning technique known as Random Forest Classifier (RFC)

models. This method is developed under the European Space Agency’s (ESA) Climate Change Initiative+ (CCI+) program10

and applied to data from GOSAT-2. Data from the Total Carbon Column Observing Network (TCCON) are employed to train

the RFC models, where retrievals are categorized as good or bad quality based on the bias between GOSAT-2 and TCCON

measurements. TCCON is a global network of Fourier transform spectrometers that measure telluric absorption spectra at

infrared wavelengths. It serves as the scientific community’s standard for validating satellite-derived XCO2 and XCH4 data.

Our results demonstrate that the machine learning-based quality filtering achieves a significant improvement, with data yield15

increasing by up to 85% and RMSE improving by up to 30%, compared to traditional threshold-based filtering. Furthermore,

inter-comparison with the TROPOspheric Monitoring Instrument (TROPOMI) indicates that the quality filtering RFC models

generalise well to the full dataset, as the expected behaviour is reproduced on a global scale.
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Low systematic biases are essential for extracting meaningful fluxes from satellite data products. Through TCCON validation

we find that all data products are within the breakthrough bias requirements set, with RMSE for XCH4 <15 ppb and XCO2 <220

ppm. We derive station-to-station biases of 4.2 ppb and 0.5 ppm for XCH4 and XCO2 respectively, and linear drift of 0.6 ppb

yr−1 and 0.2 ppm yr−1 for XCH4 and XCO2 respectively.

For XCH4, GOSAT-2 and TROPOMI are highly correlated with standard deviations less than 18 ppb and globally averaged

biases close to 0 ppb. The inter-satellite bias between GOSAT and GOSAT-2 is significant, with an average global bias of

-15 ppb. This is comparable to that seen between GOSAT and TROPOMI, consistent with our findings that GOSAT-2 and25

TROPOMI are in close agreement.

1 Introduction

Anthropogenic emissions of greenhouse gases (GHGs) such as carbon dioxide (CO2) and methane (CH4) over the last century

have led to the rapid rise of concentrations of GHGs in the atmosphere (Figure 1.4, IPCC AR6 2021, Tans and Keeling (2020),

Cross-Chapter Box 5.2 IPCC AR6 2021). The effect of such changes in atmospheric composition has a clear correlation with the30

change of climate variables - such as global sea surface temperature anomoly or sea level - with CO2 excess over preindustrial

level directly proportional to global mean surface temperature anomaly, relative to 1850-1900 (Figure 1.6, IPCC AR6 2021).

Indeed, the emergence of trend in climate variables above the natural year-to-year variability has been firmly established

(Banks and Wood, 2002; Giorgi and Bi, 2009; Lyu et al., 2014; Hawkins and Sutton, 2012; IPCC AR5, 2014; Tebaldi and

Friedlingstein, 2013), on a global scale as well as regional ones (Mahlstein et al., 2011; Hawkins et al., 2020; Rohde and35

Hausfather, 2020). The ramifications of a warming climate are serious with significant negative implications affecting the

entire globe.

Satellite retrievals of concentrations of CO2 and CH4, or rather column-averaged dry air mole fractions, denoted XCH4 and

XCO2, play an essential role in monitoring the changing climate, as these variables can be used alongside inverse modelling of

surface fluxes to estimate uptake and emission of GHG surface fluxes (Bergamaschi et al., 2009; Chevallier et al., 2007, 2005;40

Meirink et al., 2006; Metz et al., 2023). In particular satellite measurements that are sensitive to near-surface variations in GHG

concentrations are essential, and tight requirements are necessary to accurately calculate fluxes and so quantify emissions. The

Global Carbon Observing System (GCOS) has classed measurements of CO2 and CH4 columns as Essential Climate Variables

(ECVs), and defines requirements as being accurate enough to be able to determine sources and sinks on regional scales

(GCOS, 2016). To this end, ESA’s Climate Change Initiative (CCI) seeks to achieve this with the GHG-CCI+ project in which45

ECVs of CO2 and CH4 columns are delivered globally.

Particular emphasis is placed on systematic biases in satellite data, such as the change in bias over time, of which the

requirements on XCO2 and XCH4 are less than 0.5 ppm yr−1 and 3 ppb yr−1 respectively (GCOS, 2016). Furthermore, the

station-to-station bias of sites, or accuracy, from the The Total Carbon Column Observing Network (TCCON), defined as the

standard deviation of all station biases, should be less than 0.5 ppm for XCO2 and less than 10 ppb for XCH4 (GCOS, 2016).50
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The Japan Aerospace Exploration Agency (JAXA) operated satellite GOSAT-2 (Greenhouse Gases Observing Satellite-2)

has onboard the TANSO-FTS-2 instrument (Thermal And Near infrared Sensor for carbon Observation-Fourier Transform

Spectrometer-2), which has sufficient sensitivity to measure regional sources and sinks, and provides back-scattered level-1B

radiance spectra with 10 km circular ground pixels, covering the globe every 6 days in sun-synchronous orbit (Suto et al., 2021;

Imasu et al., 2023). TANSO-FTS-2 has an intelligent pointing system, allowing better coverage than its predecessor GOSAT.55

Also onboard is the dedicated cloud imager TANSO-CAI-2 (Thermal And Near infrared Sensor for carbon Observation-Cloud

and Aerosol Imager-2) (Kuze et al., 2009, 2016; Yoshida et al., 2012). GOSAT-2 operates in the near-infrared (NIR), short-wave

infrared (SWIR) bands, and the thermal infrared.

GOSAT was the first dedicated GHG observing satellite, and has been used in a wide variety of scientific studies relevant to

CO2 and CH4 since 2009, from level 2 (Butz et al., 2011; Schepers et al., 2012; Parker et al., 2020; Taylor et al., 2022) to higher60

level studies. Crucial for the carbon cycle, fluxes of CO2 have been inferred from total columns on regional scale (Chevallier

et al., 2009; Basu et al., 2013; Detmers et al., 2015) as well as global scales (Turner et al., 2015; Jiang et al., 2021; Kou et al.,

2023). Also for CH4, global flux estimates and emissions (Maasakkers et al., 2019; Zhang et al., 2021) have been derived from

GOSAT measurements, and also compared to the TROPOspheric Monitoring Instrument (TROPOMI) (Liang et al., 2023) and

airborne in-situ measurements (Tadić et al., 2012). Science with TANSO-FTS-2 has been limited, and more restricted to total65

column products (Noël et al., 2022; Yoshida et al., 2023) or instrument studies (Suto et al., 2021; Uno et al., 2021), however a

couple of recent studies have looked at retrievals from the Cloud and Aerosol Imager-2 (CAI-2) (Gogoi et al., 2023; Shi et al.,

2021).

TCCON provides the most robust measure of the accuracy of total columns of GHGs measured by satellites (Wunch et al.,

2010, 2011, 2015), and has for long been widespread used as the conventional validation for XCH4 and XCO2 retrievals (e.g.70

Dils et al. (2014); Malina et al. (2022)). It is a global network of Fourier transform spectrometers that observe, among others,

XCO2 and XCH4 with a root mean square error (RMSE) on mole fractions of 0.15 % and 0.2 % respectively (Toon et al.,

2009). These measurements are scaled to aircraft measurements for calibration (Washenfelder et al., 2006; Deutscher et al.,

2010; Messerschmidt et al., 2011; Geibel et al., 2012). TCCON measures direct sunlight and can therefore only be performed

under clear-sky conditions hampering coverage of the time-series.75

2 Data products and Input Data

In this article we present the novel level 2 GOSAT-2 scientific data products developed by SRON the Netherlands Institute

for Space Research. XCO2 and XCH4 are retrieved deploying the RemoTeC retrieval algorithm, and are processed within

the GHG-CCI+ project (Dils et al., 2014; Buchwitz et al., 2015). RemoTeC uses two different retrieval approaches which we

discuss further in section 3. From the two configurations available to RemoTeC, three column-averaged dry air mole fractions80

products are produced. GOSAT-2 has been operational since February 2019. The data products discussed here cover the time

range of the first observations until the end of 2023. Data products are available from the ESA Climate Office, under version
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v2.0.3 in Climate Data Research Package 9 (CDRP9) 1. More information about the three SRON GOSAT-2 data products can

be found in the Algorithm Theoretical Basis Documents (ATBDs) and Product User Guides (PUGs)2.

The SRON GOSAT-2 data products are generated from calibrated TANSO-FTS-2 L1B data from v210.210 for 2019 until85

June 2023, made available by the National Institute for Environmental Studies (NIES). For the second half of 2023 we used

L1B from v220.220. Instrument line shape (ILS) information is taken from Suto et al. (2021).

A pre-processing step brings meteorological data, surface data and satellite data together before the retrieval is run. Me-

teorological input data are taken from the ECMWF ERA5 reanalysis product on 137 altitude layers and a 0.75◦× 0.75◦

latitude/longitude grid (Hersbach et al., 2020). Surface information was taken from the extended Shuttle Radar Telemetry Mis-90

sion (SRTM) digital elevation map. The model used, DEM3, has global coverage at 90 meter spatial resolution3, extending

the original SRTM which is limited to latitudes of 56◦S to 60◦N. The solar reference spectra used for the retrieval is compiled

from the full resolution spectrum of Kurucz (1994).

Absorption cross sections come from the HITRAN 2008 database for spectroscopic parameters (Rothman et al., 2009).

Apriori column density profiles for CO2 and CH4 we take from TM5 (Huijnen et al., 2010) and TM4 (Meirink et al., 2006)95

model simulations respectively. For the XCH4 Proxy product, XCO2 data is used from the CAMS global inversion-optimised

greenhouse gas concentrations of Chevallier (2023). These are surface air-sample instantaneous 3 hourly mean columns on

1.9◦× 3.75◦ grids.

3 Retrieval

RemoTeC is a retrieval algorithm developed for the retrieval of trace gas column-averaged dry air mole fractions from measured100

level 1b radiance spectra in the near-infrared (NIR) and shortwave-infrared (SWIR) bands. It has been used extensively for

the retrieval of trace gases from GOSAT observations to produce the SRON XCH4 and XCO2 data products (Butz et al.,

2009, 2010), as well as the operational products of TROPOMI (Hu et al., 2016, 2018; Lorente et al., 2021) and SCHIAMACHY

(Frankenberg et al., 2005, 2011; Dils et al., 2006, 2014) . Below we outline the retrieval approach. The same approach is also

used to generate the GOSAT-2 data products.105

An XCO2 Full Physics product is obtained using the scattering forward model, and an XCH4 Full Physics product is ex-

tracted from the same retrieval. Furthermore another XCH4 product (the Proxy product) is obtained with the non-scattering

forward model. For the Full Physics approach, light scattering by cirrus and aerosol particles is accounted for in the forward

model. For the Proxy retrieval, scattering is neglected and hence atmospheric scattering properties do not need to be calculated

(Butz et al., 2009).110

1https://catalogue.ceda.ac.uk/
2Available from https://climate.esa.int/en/projects/ghgs/key-documents/
3http://www.viewfinderpanoramas.org/dem3.html
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3.1 Forward Model

Both the scattering and non-scattering forward models have the same general concept in common which we outline here.

The atmospheric state vector, x, is related to the measurement vector, y, through a forward model, F, which in the following

equation:

y = F (x,b) + ϵy + ϵF (1)115

where ϵy and ϵF are the error contributions from the measurement noise and forward model respectively, and b is the

ancillary vector containing parameters that are not retrieved. In order that the retrieval can be solved iteratively, the forward

model must be linearised. For iteration step n the linearised forward model is approximated by:

F (x,b) = F (xn,b) +K(x−xn) (2)

where xn is the state vector for the n-th iteration step and K is the Jacobian matrix at position xn defined by:120

K =
∂F

∂x
(3)

The inversion method optimises the state vector x with respect to the measurement y after applying the forward model F

to x. The inversion method is based on the Tikhonov regularization scheme (Philips, 1962; Tikhonov, 1963; Hasekamp and

Landgraf, 2005). Regularisation is required because the inverse problem is ill-posed (the measurements y typically contains

insufficient information to retrieve all state vector elements independently). The inverse algorithm finds x by minimising the125

cost function that is the sum of the least-squares cost function and a side constraint weighted by the regularisation parameter γ

according to

x̂ = x
min

(||S1/2
y (F (x)−y)||2 + γ||W (x−xa)||2) (4)

where Sy is the diagonal measurement error covariance matrix, which contains the noise estimate, xa is an a priori state

vector, and W is a diagonal weighting matrix.130

3.2 Proxy Approach

The Proxy approach is based on a non-scattering retrieval, thus the runtime of processing is around a factor of 4 faster than the

Full Physics retrieval. Furthermore, many of the errors in the retrieval, including those due to aerosol, cancel out (Butz et al.,

2009; Schepers et al., 2012) following the equation:

5

https://doi.org/10.5194/egusphere-2024-3990
Preprint. Discussion started: 24 April 2025
c© Author(s) 2025. CC BY 4.0 License.



XCH4 =
[CH4]
[CO2]

XCO2,model (5)135

which determines XCH4 from the retrieved total columns [CH4] and [CO2]. Here, the assumption is that the light path

modification by scattering particles such as aerosols is the same for CH4 and CO2 (Schepers et al., 2012). [CH4] and [CO2]

are total columns retrieved from SWIR-1 at 1.6 µm, and XCO2,model is the total column dry air mixing ratio of CO2 from an

atmospheric model, on the same grid as GOSAT-2 observations. The main source of uncertainty in this approach is therefore

XCO2,model, thus the accuracy of the XCH4 Proxy product is limited by the accuracy of the XCO2 model (Chevallier, 2023).140

The state vector of the Proxy retrieval contains CO2 and CH4 sub-columns in 12 vertical layers, H2O total column, Lamber-

tian surface albedo, first order spectral dependence of surface albedo, an intensity offset and first order spectral shifts of Earth

and Sun radiancies.

3.3 Full Physics Approach

The Full Physics retrieval uses a three-window approach retrieving information from the NIR, SWIR-1 and SWIR-2 bands.145

The treatment of aerosol in the Full Physics approach leads to more accurate retrieved total columns of trace gases, however

the radiative transfer calculations are computationally expensive. The state vector of the Full Physics retrieval is the same as

for the Proxy retrieval with additional parameters related to aerosol properties.

Aerosols are characterised by three parameters which relate to the aerosol column and size distribution of particles. The

height distribution is approximated as a Gaussian function of centre height, zaer and width ω0:150

h(zk) = N · exp
[
− 4ln(zk − zaer)2

(2ω0)2

]
(6)

Here, N is the total amount of particles and zk is the layer height. The size distribution is parameterised by a power law

function following:

n(r) =





A for r ≤ r1

A(r/r1)−α forr1 < r ≤ r2

0 for r > r2

(7)

where r1 = 0.1 µm, r2 = 10 µm and the constant A is determined from normalisation of the size distribution. N , α and zaer155

are included in the Full Physics state vector.

3.4 Bias Correction

A bias correction is applied post-retrieval to XCO2 and XCH4 using TCCON as a truth. The bias correction of RemoTeC is a

simple empirical relation between XCH4 and the retrieved albedo at 1600 nm, defined by:
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Xcorr = Xret(a + bα) (8)160

where Xret and Xcorr are the bias corrected and retrieved concentrations respectively, α is the retrieved albedo at 1600 nm

and a and b are determined such that the difference with TCCON is minimised.

4 Quality Filtering

A key step in the retrieval process is the post-processing quality flagging. Data from GOSAT are flagged using a selection of

retrieval parameters, such as signal-to-noise ratio or chi-squared, and any data that do not lie within a specified range of these165

parameters are flagged as bad quality. This method offers a binary quality flag and is described further in section 4.1.

Given the rapidly growing capabilities of machine learning techniques, algorithms such as random forest classifiers (RFCs)

provide a much more promising way of filtering satellite global data products. We have applied such a flagging technique to

the GOSAT-2 data (see section 4.2). The quality flag of GOSAT-2 takes the form of a quality assurance (QA) value that ranges

between 0 and 1, with 0 corresponding to the best quality data. Therefore, users should quality filter their data by taking QA170

values less than, or equal to, the desired value.

4.1 Threshold Criteria Approach

Extensive investigations have been conducted to identify effective retrieval parameters, or combinations of parameters, that are

correlated with the quality of XCH4 or XCO2 and that can be used to flag bad data, while at the same time maximising the

amount of good quality retrievals (Butz et al., 2010; Schepers et al., 2012). Such a set of criteria have been established also for175

GOSAT-2 and are listed in Table 1.

Criteria 6 to 8 are excluded for the Proxy product, since these are not in the state vector of the retrieval. The blended albedo

in criterion 9 is defined as Abld = 2.4 ·A(0.76µm)− 1.13 ·A(2.0µm) with the retrieved albedos A(0.76µm) andA(2.0µm) at

the indicated wavelengths (Wunch et al., 2011). Guerlet et al. (2013) investigated the use of the cirrus radiance for data filtering,

which is defined as the mean radiance in the spectral range 5154.8–5157.8 cm˘1 (1.9388− 1.9399µm). The use of the column180

ratios for data filtering was first proposed by Taylor et al. (2016) based on the difference in the non-scattering retrieved column

from a weak and strong absorption band. For this purpose, in criteria 11 and 12, we use the CO2 and H2O ratios inferred

from the 1.6 µm and 2.0 µm spectral range. Finally, O2 ratio is the retrieved O2 column divided by the prior derived from the

ECMWF surface pressure estimate.

4.2 Machine Learning Approach185

An alternative approach to quality flagging with threshold criteria, as applied on GOSAT, is to use machine learning in the

form of a random forest classifier (RFC). To this purpose, we use the RandomForestClassifier tool within Python’s SciKit

Learn package (Pedregosa et al., 2011).
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Table 1. List of threshold conditions to quality filter GOSAT-2 data.

Filter Description criteria

1 χ2 of spectral fit χ2 < 12.0

2 number of iterations Niter Niter < 31

3 signal-to-noise ratio (SNR) at band continuum SNR > 50

4 variance σsurf of surface elevation σsurf < 100 m

5 solar zenith angle (SZA) SZA< 75◦

6 aerosol optical thickness (τaer) in NIR window τaer < 1.0

7 aerosol size parameter α 3 < α < 6

8 aerosol layer height zaer 0 < zaer < 10,000 m

9 blended albedo Abld 0 < Abld < 1.4

10 cirrus radiance signal Icir 0 < Icir < 2.0 · 10−9 [W cm/(m2 s str]

11 CO2 column ratio rCO2 0.99 < RCO2 < 1.018

12 H2O column ratio rH2O 0.95 < RH2O < 1.08

13 O2 column ratio rO2 0.96 < RO2 < 1.04

A random forest model utilises an ensemble of N decision trees, which take a random subset of the available features and

each make a decision on the target classification (Breiman, 2001). The final result of the model is taken as the majority chosen190

class. This is ultimately applied to each ground pixel of GOSAT-2 data using a set of features consisting of RemoTeC retrieval

parameters, to predict the quality of the retrieval. We use separately trained models for each of the three data products, which

will be described in more detail in section 4.2.1.

4.2.1 RFC training using TCCON data

For the quality classification of our data product, we use a trained RFC. The supervised form of learning requires a labeled195

training dataset. To this end, we need knowledge of a "ground truth" and the best estimate of the true value of XCH4 and XCO2

comes from TCCON. Therefore, in order to determine the true label for the quality flag, we use GOSAT-2 level 2 data from

measurements that are colocated in space and time with TCCON sites, and classify the training sample via the bias:

|∆X|< XT : label LXT = 0 (good) (9)

|∆X|> XT : label LXT = 1 (bad) (10)200

with the biases ∆XCH4 = XCH4,GOSAT-2 - XCH4,TCCON, and ∆XCO2 = XCO2,GOSAT-2 - XCO2,TCCON. XT we name the training

threshold and takes the form of e.g. ± 18 ppb for ∆XCH4. A label L of 0 corresponds to a good-quality retrieval, and a label

of 1 means a bad-quality retrieval.

A consequence of training the random forest model on GOSAT-2 colocations with TCCON is that retrievals with surface

albedo ⪆ 0.4 were underrepresented in the training sample, due to the lack of TCCON stations in high albedo areas. This205
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would lead to albedo-related biases when using such models to filter the global dataset. To avoid this, we defined a subsample

of retrievals with albedo > 0.4 to include in the training set using the threshold filtering criteria in Table 1.

In this study, we limit the quality filtering of GOSAT-2 data using the machine learning approach to retrievals over land

only, due to the lack of available training data over ocean. We note that this limiting factor would not apply to satellite data

from push-broom spectrometers that have better spatial coverage, such as TROPOMI (Hu et al., 2016, 2018). Instead, we filter210

retrievals performed in glint mode over the ocean also following Table 1.

TCCON XCH4 and XCO2 data are also used to validate the final product (see section 5.1). Due to the supervised learning

approach, utilising TCCON data in training the filtering models means that these data can no longer be quality filtered with-

out receiving what was defined during training. Since the training data also comprise the validation data, this would lead to

artificially choosing validation results, therefore compromising any independent validation with TCCON using the assigned215

quality flags. To avoid this, we train different filtering models, one year at a time, where the data from the year to be predicted

are excluded from training. This results in one filtering model per year of data. Here we assume that the relationship between

retrieval quality and features is temporally independent.

4.2.2 RFC Prediction Performance

To evaluate our classification for the three products, we consider the performance of the RFCs by comparing its predicted220

labels to the true labels given by the elements of the confusion matrix (Liang, 2022): the False-Positive (FP), the False-Negative

(FN), the True-Positive (TP), and True-Negative (TN). Here the terms ’true’ and ’false’ refer to a correct or wrong prediction,

’positive’ and ’negative’ to the bad and good label of the predicted data. From these, we evaluate the classification using the

following metrics:

1. The true-positive-rate TPR is defined as225

TPR =
TP

TP +FN
. (11)

and measures the number of correctly identified positive instances out of all true positive instances.

2. The False-Positive rate (FPR) is the corresponding rate of False Positive with respect to all true negative instances,

FPR =
FP

FP +TN
. (12)

A binary classification model predicts the probability of an instance belonging to one of the two classes depending on the230

classification threshold, which we name pt. Varying pt, leads to the Receiver-Operating Characteristic curve (ROC) (Bradley,

1997), which is a parametric curve of FPR(pt) versus TPR(pt). For a large threshold (pt → 1), TPR goes to one, but so does

the FPR. In the other extreme for pt → 0, both TPR and FPR go to zero. Therefore, the more the ROC curve goes through the

top-left quadrant of the diagram, the better the classifier. This is characterized by the area under the ROC curve (AUC). We

assume a value of 0.5 for pt for all classification models.235
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Figure 1. ROC curves for the different filtering models of the Full Physics XCH4 product and Proxy XCH4 product, in solid and dotted lines

respectively. The solid grey line indicates the performance of a randomly guessed prediction, with a 50 % chance of being correct.

Table 2. Summary of classification metrics averaged over all years for pt=0.5.

Product TPR FPR AUC

XCO2 Full Physics 0.90 0.42 0.89

XCH4 Full Physics 0.89 0.44 0.89

XCH4 Proxy 0.64 0.14 0.83

Figure 1 compares the ROC curve for one of the XCH4 Full Physics classification models to one of the XCH4 Proxy ones.

There is no clear differentiation between the ROC curves of each product implying that the models for each year perform com-

parably to each other. Average metrics over all models per product are given in Table 2. From this we see that the performance

of the RFC models for the two Full Physics products are similar - which is intuitive given that these come from the same

retrieval - whereas the diagnostics for the Proxy product are slightly worse.240

Such an effect can be understood by the nature of the Proxy approach and as a consequence of equation 5, where most

of the systematic error is divided out by dividing the two columns of CH4 and CO2. Consequently, the distinction between

high quality and low quality retrievals is much more obvious in the Full Physics case. Quantitatively, the ratio of good to bad

retrievals in the training data is about 0.3 for the Full Physics products, whereas for the Proxy it is 1.6. It is therefore easier to

accurately label the training sample in the Full Physics RFC models, leading to better performance metrics.245

4.2.3 The QA value

In the random forest models, the strictness of the training threshold, XT , defined when labelling the training dataset (equations

9 & 10) has a directly proportional effect to the number of retrievals ultimately classed as good quality, as well as the scatter of

the total column mixing ratio with respect to TCCON. Figure 2 shows the number of good retrievals as a function of the RMSE
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derived for different training thresholds XT and the depicted positive trend is intuitively expected. This allows us to define a250

non-binary quality flag that is grounded in TCCON validation.

Starting with a set of n threshold values XT1 , · · ·XTn we can assign the label vector L = (L1, · · ·Ln) with Li = LXTi
as

defined in Eq. 9. We define the QA value of a data point by the mean value of the components of the corresponding label vector

L,

QA = ⟨L⟩ (13)255

QA can have n + 1 discrete values in the range [0,1] depending on the number n of used threshold values XT . For GOSAT-2,

we use n = 5 with QA ∈ [0,1/5,2/5, · · · ,1].

Figure 2 also shows that in comparison to filtering GOSAT-2 data using thresholding defined in Table 1, for the Full Physics

products, the new filtering can achieve an increase in data yield of ∼ 48 % and 85 % for XCH4 and XCO2 respectively, for

equivalent RMSE. Alternatively, an improvement in RMSE of 2.2 ppb and 0.7 ppm for XCH4 and XCO2 respectively can be260

achieved for equivalent data yield. For the Proxy product this can be 1.6 ppb for the same amount of data, or conversely, an

increase of 29 % for the same RMSE. Thus user can therefore choose the option of more data, which may be advantageous

to plume detection where better coverage is desirable, or better quality data, where as small as possible systematic biases are

required by atmospheric modellers. Furthermore, with Figure 2, the user may choose the QA value which corresponds to their

acceptable RMSE with TCCON.265

5 Validation and Satellite Inter-comparison

5.1 TCCON Validation

TCCON is central to the work presented here as it provides both the ground truth in labeling training data, as well as one of

the main validation sources. In this article, all references to TCCON are for the GGG2020 TCCON release (Laughner et al.,

2023). The TCCON stations used in the analysis are summarised in the Appendix in Table B1.270

In this section, we present the validation of our GOSAT-2 data products with respect to TCCON. TCCON sites are considered

only if there are more than 50 spatio-temporal colocations with GOSAT-2 over the whole time-series, defined as overlying

within a radius of 300 km and time range of ± 2.5 hrs. We evaluate the data products for the QA value of 0 (strictest filtering

with RFC models; see section 4.2.3).

Figure 3 shows the correlation between colocated GOSAT-2 and TCCON data for XCO2 and both XCH4 products. These275

are single soundings of GOSAT-2 over land compared to an average of the TCCON measurements that coincide spatially and

temporally. For XCH4 we derive a RMSE of 15.2 ppb and 15.7 ppb for the Full Physics and Proxy products respectively, and

Pearson’s correlation coefficient of 0.89 and 0.88 for the Full Physics and Proxy products respectively. For XCO2 these are 2.1

ppm and 0.88 respectively.

Time-series of GOSAT-2 colocations with TCCON for each product are shown in the Appendix section B. Following Noël280

et al. (2022), we further parameterise the bias over time as:
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Figure 2. Number of retrievals flagged as good for five different thresholds as a function of the RMSE derived by the TCCON validation.

The mean QA value per data ensemble is given by the color code. Results for XCH4 are shown on the top panel, where the RFC filtering

models for the Proxy and Full Physics product are represented by the dashed and solid lines respectively. On the bottom panel are the results

for the XCO2 filtering models. The red squares and triangles mark the parameter space for the statistics of filtering the data product according

to Table 1.

∆X = a0 + a1t + a2sin(2πt + a3) + ϵ (14)

where equation 14 is fit to the time-series of the bias of with each station individually. a0 is a constant bias term, a1 represents

a linear term, a2 measures the amplitude of the seasonal variation of the bias, a3 measures the temporal shift of the seasonal

term, and ϵ is an error term.285

The parameters in Table 3 are extracted from fits of equation 14 to the time-series of the bias for each TCCON station. We

illustrate an overview of the per station statistics in terms of site and seasonal bias, as well as linear drift in the bias, in Figures

4 to 6. ∆site is the site bias and defined as the mean of ∆X from equation 14 and ∆seas is the seasonal bias and defined as
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Figure 3. GOSAT-2 XCO2 (top), XCH4 Full Physics (middle) and XCH4 Proxy (bottom) plotted against TCCON. Data are compared only

if they are fully colocated in space and time. The standard deviation of the population, Pearson’s correlation coefficient and number of

retrievals are given in the inset. The legend plots the different TCCON stations where markers are as follows. Stations that are along the coast

and also sensitive to glint mode (ocean) measurements are indicated as circles. Those that have high latitudes in the northern and southern

hemispheres are upward triangles and crosses, respectively. Stations in Asia, North America and Europe are indicated by squares, pluses and

downward triangles respectively.
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the standard deviation of the seasonal (sine) term in equation 14. Finally, ∆dri is the linear drift and is calculated as a1 from

equation 14.290

For the Full Physics products, we derive average values of the site bias of -0.1 ppb and -0.2 ppm for XCH4 and XCO2

respectively, after bias correction. We exclude the station-averaged ∆site from Table 3 as it is by definition close to zero due

to the bias correction. The seasonal bias term is higher for both products with 4.0 ppb and 0.6 ppm for XCH4 and XCO2

respectively. For the Proxy product, the average site bias and seasonal bias are 0.2 ppb and 3.1 ppb respectively.

From Table 3 we also report a linear drift of 0.6 ppb yr−1 and 0.2 ppm yr−1 for XCH4 and XCO2 respectively, for the Full295

Physics products. For the Proxy product the average linear drift is 1.2 ppb yr−1. Another important metric of the systematic

error is the station-to-station bias. This is defined as the standard deviation of the individual site biases, in contrast to the RMSE

which is the standard deviation of all the differences together. We report station-to-station bias of 0.5 ppm, 4.2 ppb and 3.7

ppb for XCO2, XCH4 Full Physics and XCH4 Proxy, respectively. The site-to-site biases and linear drift terms are low, and

below the breakthrough systematic error threshold requirements (GCOS, 2016), which is an essential characteristic of the data300

product for determining regional scale sources and sinks through flux inversion modelling.

Comparing the TCCON validation for GOSAT-2 to those of GOSAT in Figures 4 to 6, we find that generally the RMSE is

lower for GOSAT-2 than GOSAT across all stations while the number of retrievals is higher for GOSAT-2. We observe that

the site bias is smaller for GOSAT-2 with GOSAT showing some significant biases with respect to TCCON, whereas the linear

drift is more variable between the two satellites.305

We note the difference between the average RMSE and that calculated from the sample of GOSAT-2/TCCON differences

as a whole, which is particularly clear for XCH4. The RMSE for XCH4 Full Physics taking all data as one sample is 15.2

ppb, however the average of the individual station RMSE is 13.1 ppb. From Table 3, only three stations have a RMSE higher

than 15 ppb: Caltech, Edwards and Xianghe. The disproportionately high number of collocations from Caltech and Edwards

(together constituting 40 % of the data points) skew significantly the statistics towards these stations. Due to the difficult nature310

of accurately measuring GHG concentrations at all three of these stations, we consider the values for XCH4 quoted in Figure

3 an upper limit. For the Proxy product the difference is less although still notable, with 15.7 ppb compared to 14.7 ppb when

taking the average RMSE over all stations.

Despite the lower performance of the Proxy product with respect to the Full Physics ones observed in section 4.2.2, the level

2 quality of the Proxy XCH4 product presented in Table 3 is effectively as good as the Full Physics XCH4 product, with the315

advantage of better data coverage. This can be understood by in the ratio of FP/FN, for which in the case of Full Physics is

1:1, is 2:1 for the Proxy. The higher number of FPs lead to a poorer ROC curve, however in terms of the problem of quality

filtering, FNs are more detrimental to the level 2 quality, since they correspond to ground truth bad data flagged as good.

In addition to the data we present in this article, two other XCO2 and XCH4 data products are also available from GOSAT-2.

The first are the operational GOSAT-2 data products from NIES (Yoshida et al., 2023). The authors report RMSE with respect320

to TCCON of 1.8 ppm and 8.9 ppb for XCO2 and XCH4 respectively, across a time range of March 2019 to Dec 2020. Also,

they derive station-to-station bias of 0.71 ppm and 2 ppb for XCO2 and XCH4 respectively. We note the short time-serie these

values are derived from.
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Table 3. Summary of the main statistics of GOSAT-2 product validation with TCCON. RMSE is the root mean square error, ∆dri is the

linear drift and ∆seas is the seasonal bias, averaged over all stations. σsite is the station-to-station bias.

XCH4 Full Physics XCO2 Full Physics XCH4 Proxy

RMSE ∆seas ∆dri σsite RMSE ∆seas ∆dri σsite RMSE ∆seas ∆dri σsite

(ppb) (ppb) (ppb yr−1) (ppb) (ppm) (ppm) (ppm yr−1) (ppm) (ppb) (ppb) (ppb yr−1) (ppb)

13.1 4.0 0.6 4.2 2.0 0.6 0.2 0.5 14.7 3.1 1.2 3.7

Secondly are XCO2 and XCH4 products from IUP-Bremen (Noël et al., 2021, 2022). As for Yoshida et al. (2023), the time

range of the dataset presented is until the end of 2020. The authors find, with respect to TCCON, a RMSE and station-to-station325

bias of 1.86 ppm and 1.14 ppm respectively, for XCO2 (Noël et al., 2021). For XCH4, station-to-station biases of 4.7 ppb and

6.2 ppb for the and Full Physics and Proxy products respectively, and RMSE of around 12 ppb for both, are reported (Noël

et al., 2022). The authors note that, due to the short time-series, these results are drawn from only seven TCCON stations, some

of which span only a few months.

5.2 GOSAT Inter-comparison330

The similarity in the setup of GOSAT and GOSAT-2, along with the wide use of GOSAT in the scientific literature, make

them ideal candidates for satellite inter-comparison. We compare our GOSAT-2 Full Physics products with the corresponding

GOSAT products from RemoTeC, version 2.3.8, over time frame of 2019 to 2023. For the Proxy product comparison, we

compare our GOSAT-2 XCH4 Proxy product to that of GOSAT version 2.3.9. We present comparisons only for the GOSAT-2

QA value of 0.335

From the global maps of the XCH4 Full Physics product in Figure 7, the superior coverage of GOSAT-2 is striking; a con-

sequence of the intelligent pointing system to avoid cloudy scenes. We further analyse how the GHG concentrations compare,

illustrated as kernel density estimation (KDE) plots, analysing data over land only. The scatter of satellite differences is 14.5

ppb, similar to the RMSE of the bias with TCCON (13.1 ppb; see section 5.1). We find a large average global bias of -15.2

ppb, which we discuss further in section 5.3.340

For the Proxy XCH4 product, the comparison between GOSAT and GOSAT-2 is better compared to the Full Physics prod-

uct. The average global bias is only -5.3 ppb, and the standard deviation and correlation coefficients are 13.5 ppb and 0.9

respectively.

For XCO2, the correlation between GOSAT and GOSAT-2 is weaker, with a coefficient of 0.64 compared to 0.88 for XCH4.

This difference is expected, as CO2’s longer atmospheric lifetime leads to greater large-scale diffusion, reducing correlation345

strength. The scatter of the differences is 2.9 ppm, slightly higher than the GOSAT-2 RMSE with respect to TCCON of 2.0

ppm, and we find a bias of 0.9 ppm.
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Figure 4. Overview of the bias parametrisation for the Full Physics XCH4 product, per station. Shown in blue is the RMSE, red the site bias

∆site, green the linear drift ∆dri, yellow the seasonal bias ∆seas and in purple the number of retrievals. Values for GOSAT-2 are shown in

bold bars, and those of GOSAT are in light bars. Stations are listed in order of decreasing latitude. Missing bars correspond to less than 50

colocations for that station, therefore we do not calculate the values there. We note that the site bias for GOSAT-2 at Bremen is close to zero.
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Figure 5. Overview of the bias parametrisation for the Full Physics XCO2 product, per station. Shown in blue is the RMSE, red the site bias

∆site, green the linear drift ∆dri, yellow the seasonal bias ∆seas and in purple the number of retrievals. Values for GOSAT-2 are shown in

bold bars, and those of GOSAT are in light bars. Stations are listed in order of decreasing latitude. Missing bars correspond to less than 50

colocations for that station, therefore we do not calculate the values there.
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Figure 6. Overview of the bias parametrisation for the Proxy XCH4 product, per station. Shown in blue is the RMSE, red the site bias

∆site, green the linear drift ∆dri, yellow the seasonal bias ∆seas and in purple the number of retrievals. Values for GOSAT-2 are shown in

bold bars, and those of GOSAT are in light bars. Stations are listed in order of decreasing latitude. Missing bars correspond to less than 50

colocations for that station, therefore we do not calculate the values there.
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Figure 7. GOSAT-GOSAT-2 comparison for the GOSAT-2 XCH4 Full Physics product. Maps are shown of XCH4 over the year 2020

averaged onto 2◦× 2◦ boxes for GOSAT and GOSAT-2 on the left and right respectively.

Figure 8. Correlation between GOSAT and GOSAT-2 shown as a kernel density estimation (KDE) plots for each data product. Plots for

XCH4 Full Physics, XCO2 Full Physics and XCH4 Proxy are shown from left to right, respectively. The mean bias, standard deviation,

number of points and correlation coefficient of the population are also quoted. Histograms of the number of counts are shown around the

margin, along with the linear regression and the 1-to-1 lines in black and grey respectively. Results are for soundings over land.

Furthermore, we plot time-series of GOSAT and GOSAT-2 globally, and for the three latitude bands of Northern/Southern

Hemispheres (NH & SH) and the Tropics in Figure 9. These are defined as 0◦ to 60◦N for NH,−25◦N to 25◦N for the Tropics,

and −60◦N to 0◦ for SH.350

The globally averaged seasonal cycles of XCH4 Full Physics follow each other well between April and August, but from

September to March, the GOSAT one peaks at higher values. This characteristic is representative of the Tropics and SH time-

series, however for the NH time-series, the GOSAT time-series is consistently higher by approximately 15 ppb.

For the time-series of the Proxy products, we find that the satellite time-series correlate extremely well with each other,

and the seasonal cycles follow each other closely in all latitude bands, in contrast to the Full Physics XCH4 product where355

significant biases are observed. There is a small systematic bias of around 5 ppb that begins positive but then switches around

the halfway point of the time-series.
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Figure 9. Time-series of the GOSAT and GOSAT-2 RemoTeC products. The XCH4 Full Physics, XCO2 Full Physics and XCH4 Proxy

products are shown from left to right. GOSAT-2 data are shown as solid lines, whereas GOSAT data are shown as dashed lines. The upper

panels give the globally averaged monthly time-series. The lower panels give the same but split into the different latitude bands of NH, SH

and Tropics. For XCH4, the time-series of the Tropics are shifted up by a constant factor of +50 ppb for better visualisation. For XCO2, the

time-series of the Tropics is shifted by +20 ppm and the SH by -10 ppm.

For XCO2, the time-series in the NH follow each other closely until mid-2020 after which the GOSAT time-series in con-

sistently higher than GOSAT-2. The SH time-series agree well over the whole time-series, but that of the Tropics is less

pronounced in GOSAT-2 with larger seasonal fluctuations exhibited for GOSAT.360

We note here that we compare data products from GOSAT and GOSAT-2. We do not comment on the performance of one

satellite over another as the comparison of the data products also depends on the different quality filtering applied.

5.3 TROPOMI Intercomparision

The fact that the RFC quality filtering models are trained on the spatially limited dataset of TCCON implies that understanding

how well the models - and thus also the filtering - generalise to the global GOSAT-2 dataset, is of high priority. This is reinforced365

when considering that the validation data and the training data constitute essentially the same representation of data, which

may lead to biases that would not be picked up by validation only with TCCON. Central to the performance of the models is the

behaviour exhibited in Figure 2. Therefore if such behaviour is exhibited also on global scales, this would be good confirmation

that the quality filtering performs equivalently on global dataset as it does on data colocated with TCCON.

Here we inter-compare our GOSAT-2 product against the TROPOMI operational product, version 2.4.0, and evaluate the370

performance of the quality filtering on global scales. The TROPOMI product was pre-filtered with VIIRS cloud product using

the strictest filter of cloud fraction < 0.001, and quality filtered using nominal quality flags. We note that since no XCO2 product

exists for TROPOMI, the inter-comparison here is limited to the XCH4 products. Figures 10 and 11 illustrate results for the

whole of the year 2020, taking GOSAT-2 QA value equal to 0, for the Full Physics and Proxy XCH4 products respectively. To

evaluate the generalisation of the RFC quality filtering to global scales, we give results for the other QA values of the GOSAT-2375
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product in Table 4. Furthermore, because the RFC filtering in GOSAT-2 is only applied to soundings over land, we restrict the

analysis to satellite data over land.

We find that, when considering GOSAT-2 data with QA value of 0, the global systematic bias between GOSAT-2 and

TROPOMI, which we define as XCH4,GOSAT-2-XCH4,TROPOMI, is extremely low. We derive a global average of the bias of

-5.53 ppb and 0.03 ppb for the Full Physics and Proxy products respectively. The satellite products are highly correlated380

with correlation coefficients above 0.87 and 0.86, and standard deviations less than 16.32 and 17.43 ppb of XCH4 Full-

Physics and Proxy data. Here we note that the TROPOMI operational product uses a different bias correction to GOSAT-2. The

TROPOMI bias correction is based on the small area approximation (Lorente et al., 2021; O’Dell et al., 2018) taking a uniform

XCH4 distribution as a function of albedo in multiple regions, whereas the GOSAT-2 bias correction is based on TCCON data

(equation 8).385

A key result shown in Table 4 is that the QA value increases proportional to the scatter of the GOSAT2-TROPOMI dif-

ferences and number of data points, while the bias remains effectively constant. This is a good reflection of the behaviour

represented in Figure 2, meaning that, despite the fact that the quality filtering models are trained on the spatially limited

dataset of TCCON, they generalise well to the global ensemble.

Table 4. Overview of inter-comparison of XCH4 between GOSAT-2 and TROPOMI. Information for all QA values available to GOSAT-2 are

given. ∆XCH4 is the mean bias with TROPOMI, σTROPOMI and NTROPOMI are the scatter and number of TROPOMI-GOSAT-2 colocations

respectively, and NTCCON is the number of TCCON-GOSAT-2 colocations, with σTCCON the RMSE of the bias between GOSAT-2 and

TCCON.

XCH4 Full Physics

QA value ∆XCH4 (ppb) σTROPOMI (ppb) NTROPOMI NTCCON σTCCON (ppb)

0 -4.6 15.0 22,863 17,250 15.19

0.2 -4.8 15.4 29,539 22,635 15.98

0.4 -5.3 16.5 38,049 28,943 17.36

0.6 -5.7 17.4 43,059 32,309 18.53

0.8 -6.3 18.5 47,896 34,578 19.42

XCH4 Proxy

QA value ∆XCH4 (ppb) σTROPOMI (ppb) NTROPOMI NTCCON σTCCON (ppb)

0 1.7 16.6 76,353 55,915 15.65

0.2 1.8 17.3 77,540 63,248 16.30

0.4 1.5 18.2 88,983 67,607 16.87

0.6 1.2 19.0 93,385 70,198 17.28

0.8 1.0 19.7 97,451 71,884 17.66
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Figure 10. GOSAT2-TROPOMI comparison with QA value equal to 0 for the GOSAT-2 Full Physics product. upper left: Map of TROPOMI

XCH4 daily averages colocated with GOSAT-2, over the year 2020, sampled on 2◦× 2◦ boxes. upper right: Map of GOSAT-2 XCH4 daily

averages colocated with TROPOMI, over the year 2020, sampled on 2◦× 2◦ boxes. lower left: Map of the difference between satellite data

defined as XCH4,GOSAT-2-XCH4,TROPOMI. lower right: Correlation between all colocated XCH4 measurements over 2020, shown as a kernel

density estimation (KDE) plot. The mean bias, standard deviation, number of points and correlation coefficient of the population are also

quoted. Histograms of the number of counts are shown around the margins, along with the linear regression and the 1-to-1 lines in black and

grey respectively.

From the global maps, significant differences between TROPOMI and GOSAT-2 are obvious over Northern. Central Africa390

has a similar characteristic of high bias, and we speculate that these differences are a consequence of dust and burning events

that lead to high aerosol load complicating the retrieval. This conclusion would be consistent with the fact that the biases are

larger for the Proxy GOSAT-2 product than the Full Physics product, in which aerosols are better characterised. The reason for

low coverage and high bias over the Amazon can be a result of low surface albedo and observations that are contaminated by

high water vapour.395

The global average is close to zero, in contrast to what we observe for GOSAT. Systematic biases of -13 ppb are found

between TROPOMI and GOSAT for a global average (Hu et al., 2018; Lorente et al., 2021). A similar bias is found, in both
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Figure 11. The same as Figure 10 but for the GOSAT-2 Proxy product.

sign and magnitude, between GOSAT and GOSAT-2 (section 5.2). Both, TROPOMI and GOSAT-2 XCH4 are globally below

the corresponding XCH4 GOSAT data. We propose therefore that the bias observed between GOSAT and GOSAT-2 comes

from systematic biases in the GOSAT XCH4 products, consistent with the results of TCCON validation presented in Figures 4400

and 6.

6 Conclusions

In this article, we have presented total column mixing ratio data products from GOSAT-2, retrieved with the RemoTeC algo-

rithm. From the two retrieval approaches of RemoTeC, three products are extracted; XCH4 and XCO2 from the Full Physics

retrieval and XCH4 from the Proxy retrieval. The time-series of these products span five years, from 2019 to 2023. All three405

products are validated with TCCON and inter-compared to GOSAT and TROPOMI and the long time-series ensures robust

results from each.
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The RMSE between GOSAT-2 and TCCON of both the XCH4 products is below 15 ppb, with the Proxy product having

more data by a factor of 3, and the RMSE of XCO2 is 2 ppm. We derive station-to-station biases of 4.2 ppb and 0.5 ppm for

the XCH4 and XCO2 Full Physics products respectively, and 3.7 ppb for the Proxy product. Finally we quantify the linear drift410

as 0.6 ppb yr−1, 0.2 ppm yr−1 and or XCH4 Full Physics, XCO2 Full Physics and XCH4 Proxy products respectively.

In comparison to GOSAT, the GOSAT-2 XCH4 Full Physics product shows large differences, with a global average bias

of -15 ppb. This is less for the Proxy product and on the order of -5 ppb. Compared to TROPOMI, GOSAT-2 is in excellent

agreement, with average global biases of -5 ppb and 0 ppb for the Full Physics and Proxy GOSAT-2 products respectively. High

correlation coefficients above 0.85, and standard deviations less than 17 ppb are derived for GOSAT-2 compared to TROPOMI.415

Finally, we present a new quality filtering based on a machine learning approach. Training data for the random forest

classifier models are taken from TCCON colocations with GOSAT-2, where we classify good/bad quality retrievals through

the bias with TCCON. Since TCCON data are also used to validate the products, we train separate models to quality filter each

year of data, to avoid compromising any independent validation.

Multiple QA values are implemented by training models with different training thresholds. Increasing the QA value leads to420

more data at the cost of worsening the RMSE with TCCON. In this way, users can choose between higher data yield or better

quality data, which may have different advantages depending on the use of the data product.

Appendix A: GOSAT-2 data over Ocean

Despite the low surface albedo, satellite measurements over ocean are possible when operating the satellite in sunglint mode.

Sunglint observations take advantage of specific viewing angles where the radiance of back-scattered sunlight is higher due to425

reflection from waves. This amplifies the albedo, allowing retrievals over ocean to be carried out, where the albedo is generally

too low to retrieve accurate concentrations.

TCCON stations are located only on land, therefore validation of sunglint observations are only possible using stations that

are close to shorelines, or on islands. In this section, the results of the TCCON validation for sunglint mode, for all three

RemoTeC GOSAT-2 products, are presented.430

The RMSE for ocean measurements is higher than over land, although correlation coefficients are comparable. For XCH4,

this is more obvious for the Full Physics product, compared to the Proxy product, with 3 ppb difference in RMSE between

ocean and land. We note that such statistics are drawn only from a handful of TCCON stations due to the limited availability of

TCCON data close to the ocean. As mentioned in section 4.2.1, GOSAT-2 measurements in sunglint mode are quality filtered

using the threshold criteria described in section 4.1.435

Appendix B: Supplementary Material of TCCON Validation

Here we provide additional information on the validation of GOSAT-2 products with TCCON. Table B1 lists all the TCCON

stations used in the analysis. Data from all stations are also used as input to train the RFC quality filtering networks. Figures
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Figure A1. GOSAT-2 plotted against TCCON for the Full Physics XCH4, Full Physics XCO2 and Proxy XCH4 products from left to right

respectively. Data are compared only if they are fully colocated in space and time. The standard deviation of the population, Pearson’s

correlation coefficient and number of retrievals are given in the inset. The legend plots the different TCCON stations.

Figure A2. Time-series of GOSAT-2 colocated measurements over ocean with TCCON stations for the XCH4 Full Physics retrievals. All

GOSAT-2 observations are taken in sunglint mode. Pink circles correspond to the daily average of TCCON soundings that are spatio-

temporally colocated with GOSAT-2. All individual GOSAT-2 sounding coloated with TCCON are plotted as blue circles, and the daily

average of these are given as black triangles.

Figure A3. Same as Figure A2 but for the XCO2 Full Physics product.
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Figure A4. Same as Figure A2 but for the XCH4 Proxy product.

B1 to B3 present time-series of GOSAT-2 compared to TCCON for all stations for the XCH4 Full Physics, XCO2 Full Physics

and XCH4 Proxy products respectively. When enough TCCON data is available, time-series span the full 5 year period from440

2019 to 2023.
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Figure B1. Time-series of GOSAT-2 colocated measurements with TCCON stations for the XCH4 Full Physics retrievals. Pink squares

correspond to the daily average of TCCON soundings that are spatio-temporally colocated with GOSAT-2. All individual GOSAT-2 sounding

coloated with TCCON are plotted as blue circles, and the daily average of these are given as black triangles.
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Figure B2. Same as Figure B1 but for the XCO2 Full Physics product.
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Figure B3. Same as Figure B1 but for the XCH4 Proxy product.
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Table B1. List of TCCON stations used in training the quality filtering model and/or validation.

Site (Country) Coordinates (lat, lon◦) Reference

Bremen (Germany) [53, 8.85] (Notholt et al., 2022)

Burgos (Phillipines) [18.53, 120.65] (Morino et al., 2022c)

Caltech (USA) [34.14, -118.13] (Wennberg et al., 2022a)

Darwin (Australia) [-12.42, 130.89] (Deutscher et al., 2023b)

East Trout Lake (Canada) [54.35, -104.99] (Wunch et al., 2022)

Edwards (USA) [34.96, -117.88] (Iraci et al., 2022)

Eureka (Canada) [80.05, -86.42] (Strong et al., 2022)

Garmisch (Germany) [47.48, 11.06] (Sussmann and Rettinger, 2023)

Harwell (UK) [51.57, -1.32] (Weidmann et al., 2023)

Hefei (China) [31.9, 119.17] (Liu et al., 2023)

Izana (Spain) [28.30, 16.50] (García et al., 2022)

Karlsruhe (Germany) [49.10, 8.44] (Hase et al., 2023)

Lamont (USA) [36.60, -97.49] (Wennberg et al., 2022c)

Lauder (New Zealand) [-45.04, 169.68] (Pollard et al., 2022)

Nicosia (Cyprus) [35.14, 33.38] (Petri et al., 2024)

Ny Ålesund (Norway) [78.92,11.92] (Buschmann et al., 2022)

Orleans (France) [47.97, 2.11] (Warneke et al., 2022)

Paris (France) [48.49, 2.36] (Té et al., 2022)

Park Falls (USA) [45.95, -90.27] (Wennberg et al., 2022b)

Reunion Island (France) [-20.9, 55.48] (De Mazière et al., 2022)

Rikubetsu (Japan) [43.46, 143.77] (Morino et al., 2022a)

Saga (Japan) [33.24, 130.29] (Shiomi et al., 2022)

Sodankylå (Finland) [67.37, 26.63] (Kivi et al., 2022)

Tsukuba (Japan) [36.05, 140.12] (Morino et al., 2022b)

Wollongong (Australia) [-34.41, 150.88] (Deutscher et al., 2023a)

Xianghe (China) [39.80, 116.96] (Zhou et al., 2022)
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Tadić, J. M., Loewenstein, M., Frankenberg, C., Iraci, L. T., Yates, E. L., Gore, W., and Kuze, A.: A comparison of in-situ aircraft mea-

surements of carbon dioxide to GOSAT data measured over Railroad Valley playa, Nevada, USA, Atmospheric Measurement Techniques

Discussions, 5, 5641–5664, https://doi.org/10.5194/amtd-5-5641-2012, 2012.

Tans, P. and Keeling, R.: Trends in Atmospheric Carbon Dioxide. Global Monitoring Laboratory, National Oceanic & Atmospheric Admin-

istration Earth System Research Laboratories, (NOAA/ESRL), 2020.705

Taylor, T. E., O’Dell, C. W., Frankenberg, C., Partain, P. T., Cronk, H. Q., Savtchenko, A., Nelson, R. R., Rosenthal, E. J., Chang, A. Y.,

Fisher, B., Osterman, G. B., Pollock, R. H., Crisp, D., Eldering, A., and Gunson, M. R.: Orbiting Carbon Observatory-2 (OCO-2)

cloud screening algorithms: validation against collocated MODIS and CALIOP data, Atmospheric Measurement Techniques, 9, 973–

989, https://doi.org/10.5194/amt-9-973-2016, 2016.

Taylor, T. E., O’Dell, C. W., Crisp, D., Kuze, A., Lindqvist, H., Wennberg, P. O., Chatterjee, A., Gunson, M., Eldering, A., Fisher, B., Kiel,710

M., Nelson, R. R., Merrelli, A., Osterman, G., Chevallier, F., Palmer, P. I., Feng, L., Deutscher, N. M., Dubey, M. K., Feist, D. G., García,

O. E., Griffith, D. W. T., Hase, F., Iraci, L. T., Kivi, R., Liu, C., De Mazière, M., Morino, I., Notholt, J., Oh, Y.-S., Ohyama, H., Pollard,

D. F., Rettinger, M., Schneider, M., Roehl, C. M., Sha, M. K., Shiomi, K., Strong, K., Sussmann, R., Té, Y., Velazco, V. A., Vrekoussis,

38

https://doi.org/10.5194/egusphere-2024-3990
Preprint. Discussion started: 24 April 2025
c© Author(s) 2025. CC BY 4.0 License.



M., Warneke, T., and Wunch, D.: An 11-year record of XCO2 estimates derived from GOSAT measurements using the NASA ACOS

version 9 retrieval algorithm, Earth System Science Data, 14, 325–360, https://doi.org/10.5194/essd-14-325-2022, 2022.715

Té, Y., Jeseck, P., and Janssen, C.: TCCON data from Paris (FR), Release GGG2020.R0, https://doi.org/10.14291/tccon.ggg2020.paris01.R0,

2022.

Tebaldi, C. and Friedlingstein, P.: Delayed detection of climate mitigation benefits due to climate inertia and variability., Proceedings of the

National Academy of Sciences, 110(43), 2013.

Tikhonov, A. N.: Solution of incorrectly formulated problems and the regularization method., Soviet Math., 4, 1035–1038, 1963.720

Toon, G., Blavier, J.-F., Washenfelder, R., Wunch, D., Keppel-Aleks, G., Wennberg, P., Connor, B., Sherlock, V., Griffith, D., Deutscher,

N., and Notholt, J.: Total Column Carbon Observing Network (TCCON), in: Advances in Imaging, p. JMA3, Optica Publishing Group,

https://doi.org/10.1364/FTS.2009.JMA3, 2009.

Turner, A. J., Jacob, D. J., Wecht, K. J., Maasakkers, J. D., Lundgren, E., Andrews, A. E., Biraud, S. C., Boesch, H., Bowman, K. W.,

Deutscher, N. M., Dubey, M. K., Griffith, D. W. T., Hase, F., Kuze, A., Notholt, J., Ohyama, H., Parker, R., Payne, V. H., Sussmann, R.,725

Sweeney, C., Velazco, V. A., Warneke, T., Wennberg, P. O., and Wunch, D.: Estimating global and North American methane emissions

with high spatial resolution using GOSAT satellite data, Atmospheric Chemistry and Physics, 15, 7049–7069, https://doi.org/10.5194/acp-

15-7049-2015, 2015.

Uno, T., Oishi, T., Fujii, Y., Imaki, M., Sato, A., Kataoka, F., Imai, H., Hashimoto, M., Shiomi, K., and Nakajima, M.: The develop-

ment and on-orbit calibration status of GOSAT-2 TANSO-CAI-2 instrument, in: International Conference on Space Optics — ICSO730

2020, edited by Cugny, B., Sodnik, Z., and Karafolas, N., vol. 11852, p. 1185257, International Society for Optics and Photonics, SPIE,

https://doi.org/10.1117/12.2599936, 2021.

Warneke, T., Petri, C., Notholt, J., and Buschmann, M.: TCCON data from Orléans (FR), Release GGG2020.R0,

https://doi.org/10.14291/tccon.ggg2020.orleans01.R0, 2022.

Washenfelder, R. A., Toon, G. C., Blavier, J.-F., Yang, Z., Allen, N. T., Wennberg, P. O., Vay, S. A., Matross, D. M., and Daube., B. C.:735

Carbon Dioxide Column Abundances at the Wisconsin Tall Tower Site., Journal of Geophysical Research, D 111 (D22), 2006.

Weidmann, D., Brownsword, R., and Doniki, S.: TCCON data from Harwell, Oxfordshire (UK), Release GGG2020.R0,

https://doi.org/10.14291/tccon.ggg2020.harwell01.R0, funding by Science and Technology Facilities Council GRID grid.14467.30., 2023.

Wennberg, P. O., Roehl, C., Wunch, D., Blavier, J.-F., Toon, G. C., Allen, N. T., Treffers, R., and Laughner, J.: TCCON data from Caltech

(US), Release GGG2020.R0, https://doi.org/10.14291/tccon.ggg2020.pasadena01.R0, funding by NASA, 2022a.740

Wennberg, P. O., Roehl, C. M., Wunch, D., Toon, G. C., Blavier, J.-F., Washenfelder, R., Keppel-Aleks, G., and Allen, N. T.: TCCON data

from Park Falls (US), Release GGG2020.R1, https://doi.org/10.14291/tccon.ggg2020.parkfalls01.R1, funding by NASA, 2022b.

Wennberg, P. O., Wunch, D., Roehl, C. M., Blavier, J.-F., Toon, G. C., and Allen, N. T.: TCCON data from Lamont (US), Release

GGG2020.R0, https://doi.org/10.14291/tccon.ggg2020.lamont01.R0, funding by NASA, 2022c.

Wunch, D., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Stephens, B. B., Fischer, M. L., Uchino, O., Abshire, J. B., Bernath, P., Biraud, S. C.,745

Blavier, J.-F. L., Boone, C., Bowman, K. P., Browell, E. V., Campos, T., Connor, B. J., Daube, B. C., Deutscher, N. M., Diao, M., Elkins,

J. W., Gerbig, C., Gottlieb, E., Griffith, D. W. T., Hurst, D. F., Jiménez, R., Keppel-Aleks, G., Kort, E. A., Macatangay, R., Machida, T.,

Matsueda, H., Moore, F., Morino, I., Park, S., Robinson, J., Roehl, C. M., Sawa, Y., Sherlock, V., Sweeney, C., Tanaka, T., and Zondlo,

M. A.: Calibration of the Total Carbon Column Observing Network using aircraft profile data, Atmospheric Measurement Techniques, 3,

1351–1362, https://doi.org/10.5194/amt-3-1351-2010, 2010.750

39

https://doi.org/10.5194/egusphere-2024-3990
Preprint. Discussion started: 24 April 2025
c© Author(s) 2025. CC BY 4.0 License.



Wunch, D., Wennberg, P. O., Toon, G. C., Connor, B. J., Fisher, B., Osterman, G. B., Frankenberg, C., Mandrake, L., O’Dell, C., Ahonen, P.,

Biraud, S. C., Castano, R., Cressie, N., Crisp, D., Deutscher, N. M., Eldering, A., Fisher, M. L., Griffith, D. W. T., Gunson, M., Heikkinen,

P., Keppel-Aleks, G., Kyrö, E., Lindenmaier, R., Macatangay, R., Mendonca, J., Messerschmidt, J., Miller, C. E., Morino, I., Notholt, J.,

Oyafuso, F. A., Rettinger, M., Robinson, J., Roehl, C. M., Salawitch, R. J., Sherlock, V., Strong, K., Sussmann, R., Tanaka, T., Thompson,

D. R., Uchino, O., Warneke, T., and Wofsy, S. C.: A method for evaluating bias in global measurements of CO2 total columns from space,755

Atmospheric Chemistry and Physics, 11, 12 317–12 337, https://doi.org/10.5194/acp-11-12317-2011, 2011.

Wunch, D., Toon, G. C., Sherlock, V., Deutscher, N. M., Liu, C., Feist, D. G., and Wennberg, P. O.: Documentation for the 2014 TCCON

Data Release (GGG2014.R0)., CaltechDATA., 2015.

Wunch, D., Mendonca, J., Colebatch, O., Allen, N. T., Blavier, J.-F., Kunz, K., Roche, S., Hedelius, J., Neufeld, G., Springett, S., and et al.:

TCCON data from East Trout Lake, SK (CA), Release GGG2020.R0, https://doi.org/10.14291/tccon.ggg2020.easttroutlake01.R0, funding760

by Canada Foundation for Innovation GRID grid.439998.6., 2022.

Yoshida, Y., Kikuchi, N., and Yokota, T.: On-orbit radiometric calibration of SWIR bands of TANSO-FTS onboard GOSAT, Atmospheric

Measurement Techniques, 5, 2515–2523, https://doi.org/10.5194/amt-5-2515-2012, 2012.

Yoshida, Y., Someya, Y., Ohyama, H., Morino, I., Matsunaga, T., Deutscher, N. M., Griffith, D. W. T., Hase, F., Iraci, L. T., Kivi, R., Notholt,

J., Pollard, D. F., Té, Y., Velazco, V. A., and Wunch, D.: Quality evaluation of the column-averaged dry air mole fractions of carbon765

dioxide and methane observed by GOSAT and GOSAT-2, SOLA, advpub, 2023–023, https://doi.org/10.2151/sola.2023-023, 2023.

Zhang, Y., Jacob, D. J., Lu, X., Maasakkers, J. D., Scarpelli, T. R., Sheng, J.-X., Shen, L., Qu, Z., Sulprizio, M. P., Chang, J., Bloom, A. A.,

Ma, S., Worden, J., Parker, R. J., and Boesch, H.: Attribution of the accelerating increase in atmospheric methane during 2010–2018 by

inverse analysis of GOSAT observations, Atmospheric Chemistry and Physics, 21, 3643–3666, https://doi.org/10.5194/acp-21-3643-2021,

2021.770

Zhou, M., Wang, P., Kumps, N., Hermans, C., and Nan, W.: TCCON data from Xianghe, China, Release GGG2020.R0,

https://doi.org/10.14291/tccon.ggg2020.xianghe01.R0, 2022.

40

https://doi.org/10.5194/egusphere-2024-3990
Preprint. Discussion started: 24 April 2025
c© Author(s) 2025. CC BY 4.0 License.


